VARIABILITY OF CARPATHIAN BIOCLIMATIC ZONES: NUCLEAR CONFIGURATION OF LANDSCAPES IN DYNAMICS
PDF (Українська)

Keywords

bioclimate, climate change, air temperature, landscape region, Carpathians

How to Cite

Kholiavchuk Д. І. (2023). VARIABILITY OF CARPATHIAN BIOCLIMATIC ZONES: NUCLEAR CONFIGURATION OF LANDSCAPES IN DYNAMICS. Landscape Science, (4(2), 33–44. https://doi.org/10.31652/2786-5665-2023-4-33-44

Abstract

The paper explores the variability of bioclimatic indicators, with a particular emphasis on air temperature, revealing fluctuations in the nuclear configuration of the Carpathian landscape regions. To achieve this, multi-year monthly gridded data from the ERA5-Land series for the period of 1961-2020 are utilized. This variability becomes evident in the decadal and short-term fluctuations of the high mountain bioclimatic core zone and its associated lower zones, highlighting a deviation from symmetry in the distribution of bioclimatic zones, extending from the core towards the foothills. High and mid-mountain bioclimatic zones are primarily thermally dependent, while low mountain zones are susceptible to precipitation deficits. The research identifies the influence of climate warming and anthropogenic factors in shaping the succession of nuclear landscape regions within the Carpathians. Throughout all months between 1961 and 2020, warming is consistently observed, as confirmed by significant positive trends in average monthly air temperatures. The only exception to this trend is found in the high mountain landscape zones, which exhibit the lowest and insignificant magnitude of the warming trend in January. Among these zones, the coldest regions are in the Eastern Carpathians, specifically on the northeastern macroslope. In contrast, July experiences a significant warming trend in all Carpathian regions, particularly in the Western Carpathians, possibly attributed to changes in the influence of Atlantic circulation. Consequently, a reduction in the extent of alpine and subnival high mountain landscapes, including coniferous forests, is determined. Among the various bioclimatic zones within the Carpathians, mixed forest landscapes emerge as remarkably resilient to fluctuations in bioclimatic indicators, underscoring their significance as a dominant nuclear landscape region of the Carpathians. The findings suggest that these patterns have the potential to provide valuable insights into the dynamic interpretation of mountain landscapes and can be integrated into physical-geographical zoning schemes. In summary, this research contributes to a deeper understanding of the climatic dynamics in the Carpathian region and their implications for landscape changes

https://doi.org/10.31652/2786-5665-2023-4-33-44
PDF (Українська)

References

Гродзинський, М.Д. (2005). Пізнання ландшафту: місце і простір: монографія. У 2-х т. Київ, Видавничо-поліграфічний центр “Київський університет”. Т.2.

Круглов І. (2008). Делімітація, метризація та класифікація морфогенних екорегіонів Українських Карпат. Укр. геогр. журн., 3, 59–68.

Українські Карпати. Цифрова ландшафтна карта (базовий масштаб 1:500 000). (2016-2017). Автор-укладач Т. Г. Купач, редагування – Л. Ю. Сорокіна. Укладено на основі матеріалів: А. В. Мельник, 1999; Б. П. Муха, 2003; Л. І. Воропай, В. М. Гуцуляк, М. В. Дутчак, М. М. Куниця, П. І. Чернега, 1985; Л. М. Тимуляк, 2007. Київ, Інститут географії НАН України.

Adler, C., P.Wester, I. Bhatt, C. Huggel, G.E. Insarov, M.D. Morecroft, V. Muccione, and A. Prakash (2022). Cross-Chapter Paper 5: Mountains. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)].Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2273–2318, doi:10.1017/9781009325844.022

Bailey, R. G. (2014). Ecoregions: The ecosystem geography of the oceans and continents. In Ecoregions: The Ecosystem Geography of the Oceans and Continents. https://doi.org/10.1007/978-1-4939-0524-9

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.214

Birsan, M.-V., Dumitrescu, A., Micu, D. M., & Cheval, S. (2014). Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards, 74(3), 1899–1910. https://doi.org/10.1007/s11069-014-1290-5

Budeanu, M., Petritan, A. M., Popescu, F., Vasile, D., & Tudose, N. C. (2016). The Resistance of European Beech (Fagus sylvatica) from the Eastern Natural Limit of Species to Climate Change. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 625–633. https://doi.org/10.15835/nbha44210262

Dobiński, W. (2005). Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe. Permafrost and Periglacial Processes, 16(4), 395–398. https://doi.org/10.1002/ppp.524

Fisher, M. R., Dors̆ner, K., Geddes, A., Theis, T., & Tomkin, J. (2018). Environmental biology. Open Oregon Educational Resources

Hess M (1965) Piętra klimatyczne w polskich Karpatach Zachodnich [Vertical climatic zones in the Polish Western Carpathians]. Zeszyty Naukowe UJ, Prace Geograficzne 11, 1–267 [in Polish]

Hess M (1971) Piętra klimatyczne w Kawrpatach Północnych i Południowych i ich charakterystyka termiczna [Vertical climatic zones in north and south Carpathians and their thermic characteristics]. Folia Geogr Ser Geogr Phy Kraków, 5, 15–23 [in Polish]

Hlásny, T., Trombik, J., Dobor, L., Barcza, Z., & Barka, I. (2016). Future climate of the Carpathians: climate change hot-spots and implications for ecosystems. Regional Environmental Change, 16(5), 1495–1506. https://doi.org/10.1007/s10113-015-0890-2

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the IPCC Sixth Assessment Report. SYNTHESIS REPORT OF THE IPCC SIXTH ASSESSMENT REPORT (AR6).

Kholiavchuk, D. (2022). Changes in the atmospheric circulation types over western Ukraine in the 20th-21st centuries. Visnyk Kyivskogo nacionalnogo universytetu imeni Tarasa Shevchenka, Geografiya [Bulletin of Taras Shevchenko National University of Kyiv, Geography], 3/4 (84/85), 39-45 (in English, abstr. in Ukrainian), DOI: 10.17721/1728-2721.2022.85.2

Kholiavchuk, D., & Cebulska, M. (2019). The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013. Theoretical and Applied Climatology, 138(3–4), 1615–1628. https://doi.org/10.1007/s00704-019-02910-z

Kynal, O., & Kholiavchuk, D. (2016). Climate variability in the mountain river valleys of the Ukrainian Carpathians. Quaternary International, 415, 154–163. https://doi.org/10.1016/j.quaint.2015.12.053

Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A., & Birsan, M.-V. (2021). Temperature changes and elevation-warming relationships in the Carpathian Mountains. International Journal of Climatology, 41(3), 2154–2172. https://doi.org/10.1002/joc.6952

Muñoz Sabater, J. (2019). ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.68d2bb30

Niedźwiedź, T. (2012). Climate. In M. and K. A. Lóczy Dénes and Stankoviansky (Ed.), Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region (pp. 19–29). Springer Netherlands. https://doi.org/10.1007/978-94-007-2448-8_2

Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., & Adler, C. (2022). Climate Changes and Their Elevational Patterns in the Mountains of the World. In Reviews of Geophysics (Vol. 60, Issue 1). https://doi.org/10.1029/2020RG000730

Pörtner, H.-O., D.C. Roberts, H. Adams … Z. Zaiton Ibrahim (2022). Technical Summary. [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge,UK and New York, NY, USA, pp. 37–118, doi:10.1017/9781009325844.002.

Ronikier, M. (2011). Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. In Taxon (Vol. 60, Issue 2). https://doi.org/10.1002/tax.602008

Sayre, R. (2014). A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach. A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach.

Sayre, R., Frye, C., Karagulle, D., Krauer, J., Breyer, S., Aniello, P., Wright, D. J., Payne, D., Adler, C., Warner, H., Vansistine, D. P., & Cress, J. (2018). A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mountain Research and Development, 38(3). https://doi.org/10.1659/MRD-JOURNAL-D-17-00107.1

Schurman, J. S., Babst, F., Björklund, J., Rydval, M., Bače, R., Čada, V., Janda, P., Mikolas, M., Saulnier, M., Trotsiuk, V., & Svoboda, M. (2019). The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 25(9), 3136–3150. https://doi.org/10.1111/gcb.14721

Shvidenko, A., Buksha, I., Krakovska, S., & Lakyda, P. (2017). Vulnerability of Ukrainian forests to climate change. Sustainability (Switzerland), 9(7). https://doi.org/10.3390/su9071152

Walanus, A., Cebulska, M., & Twardosz, R. (2021). Long-Term Variability Pattern of Monthly and Annual Atmospheric Precipitation in the Polish Carpathian Mountains and Their Foreland (1881–2018). Pure and Applied Geophysics, 178(2), 633–650. https://doi.org/10.1007/s00024-021-02663-9

Wouters, H., (2021). Downscaled bioclimatic indicators for selected regions from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.fe90a594

References

Adler, C., P.Wester, I. Bhatt, C. Huggel, G.E. Insarov, M.D. Morecroft, V. Muccione, and A. Prakash (2022). Cross-Chapter Paper 5: Mountains. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)].Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2273–2318, doi:10.1017/9781009325844.022

Bailey, R. G. (2014). Ecoregions: The ecosystem geography of the oceans and continents. In Ecoregions: The Ecosystem Geography of the Oceans and Continents. https://doi.org/10.1007/978-1-4939-0524-9

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.214

Birsan, M.-V., Dumitrescu, A., Micu, D. M., & Cheval, S. (2014). Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards, 74(3), 1899–1910. https://doi.org/10.1007/s11069-014-1290-5

Budeanu, M., Petritan, A. M., Popescu, F., Vasile, D., & Tudose, N. C. (2016). The Resistance of European Beech (Fagus sylvatica) from the Eastern Natural Limit of Species to Climate Change. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 625–633. https://doi.org/10.15835/nbha44210262

Dobiński, W. (2005). Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe. Permafrost and Periglacial Processes, 16(4), 395–398. https://doi.org/10.1002/ppp.524

Fisher, M. R., Dors̆ner, K., Geddes, A., Theis, T., & Tomkin, J. (2018). Environmental biology. Open Oregon Educational Resources.

Hess M (1965) Piętra klimatyczne w polskich Karpatach Zachodnich [Vertical climatic zones in the Polish Western Carpathians]. Zeszyty Naukowe UJ, Prace Geograficzne 11, 1–267 [in Polish]

Hess M (1971) Piętra klimatyczne w Kawrpatach Północnych i Południowych i ich charakterystyka termiczna [Vertical climatic zones in north and south Carpathians and their thermic characteristics]. Folia Geogr Ser Geogr Phy Kraków, 5, 15–23 [in Polish]

Hlásny, T., Trombik, J., Dobor, L., Barcza, Z., & Barka, I. (2016). Future climate of the Carpathians: climate change hot-spots and implications for ecosystems. Regional Environmental Change, 16(5), 1495–1506. https://doi.org/10.1007/s10113-015-0890-2

Hrodzynskyi, M.D. (2005). Piznannia landshaftu: mistse i prostir: monohrafiia. [Knowledge of the landscape: place and space: Monograph] U 2-kh t. Kyiv, Vydavnycho-polihrafichnyi tsentr “Kyivskyi universytet”. T.2. [in Ukrainian]

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the IPCC Sixth Assessment Report. SYNTHESIS REPORT OF THE IPCC SIXTH ASSESSMENT REPORT (AR6).

Kholiavchuk, D. (2022). Changes in the atmospheric circulation types over western Ukraine in the 20th-21st centuries. Visnyk Kyivskogo nacionalnogo universytetu imeni Tarasa Shevchenka, Geografiya [Bulletin of Taras Shevchenko National University of Kyiv, Geography], 3/4 (84/85), 39-45 (in English, abstr. in Ukrainian), DOI: 10.17721/1728-2721.2022.85.2

Kholiavchuk, D., & Cebulska, M. (2019). The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013. Theoretical and Applied Climatology, 138(3–4), 1615–1628. https://doi.org/10.1007/s00704-019-02910-z

Kruhlov I. (2008). Delimitatsiia, metryzatsiia ta klasyfikatsiia morfohennykh ekorehioniv Ukrainskykh Karpat. [Вelimitation, metrisation and classification of morphogenic ecoregions for the Ukrainian Carpathians]. Ukr. heohr. zhurn., 3, 59–68. [in Ukrainian]

Kynal, O., & Kholiavchuk, D. (2016). Climate variability in the mountain river valleys of the Ukrainian Carpathians. Quaternary International, 415, 154–163. https://doi.org/10.1016/j.quaint.2015.12.053

Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A., & Birsan, M.-V. (2021). Temperature changes and elevation-warming relationships in the Carpathian Mountains. International Journal of Climatology, 41(3), 2154–2172. https://doi.org/10.1002/joc.6952

Muñoz Sabater, J. (2019). ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.68d2bb30

Niedźwiedź, T. (2012). Climate. In M. and K. A. Lóczy Dénes and Stankoviansky (Ed.), Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region (pp. 19–29). Springer Netherlands. https://doi.org/10.1007/978-94-007-2448-8_2

Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., & Adler, C. (2022). Climate Changes and Their Elevational Patterns in the Mountains of the World. In Reviews of Geophysics, 60 (1). https://doi.org/10.1029/2020RG000730

Pörtner, H.-O., D.C. Roberts, H. Adams … Z. Zaiton Ibrahim (2022). Technical Summary. [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge,UK and New York, NY, USA, pp. 37–118, doi:10.1017/9781009325844.002.

Ronikier, M. (2011). Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. In Taxon, 60(2). https://doi.org/10.1002/tax.602008

Sayre, R. (2014). A New Map of Global Ecological Land Units – An Ecophysiographic Stratification Approach. A New Map of Global Ecological Land Units – An Ecophysiographic Stratification Approach.

Sayre, R., Frye, C., Karagulle, D., Krauer, J., Breyer, S., Aniello, P., Wright, D. J., Payne, D., Adler, C., Warner, H., Vansistine, D. P., & Cress, J. (2018). A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mountain Research and Development, 38(3). https://doi.org/10.1659/MRD-JOURNAL-D-17-00107.1

Schurman, J. S., Babst, F., Björklund, J., Rydval, M., Bače, R., Čada, V., Janda, P., Mikolas, M., Saulnier, M., Trotsiuk, V., & Svoboda, M. (2019). The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 25(9), 3136–3150. https://doi.org/10.1111/gcb.14721

Shvidenko, A., Buksha, I., Krakovska, S., & Lakyda, P. (2017). Vulnerability of Ukrainian forests to climate change. Sustainability (Switzerland), 9(7). https://doi.org/10.3390/su9071152

Ukrainski Karpaty. Tsyfrova landshaftna karta (bazovyi masshtab 1:500000). (2016-2017) [The Ukrainian Carpathians. Digital landscape map (basic scale 1:500000]. Avtor-ukladach T. H. Kupach, redahuvannia – L. Yu. Sorokina. Ukladeno na osnovi materialiv: A. V. Melnyk, 1999; B. P. Mukha, 2003; L. I. Voropai, V. M. Hutsuliak, M. V. Dutchak, M. M. Kunytsia, P. I. Cherneha, 1985; L. M. Tymuliak, 2007. Kyiv, Instytut heohrafii NAN Ukrainy. [in Ukrainian].

Walanus, A., Cebulska, M., & Twardosz, R. (2021). Long-Term Variability Pattern of Monthly and Annual Atmospheric Precipitation in the Polish Carpathian Mountains and Their Foreland (1881–2018). Pure and Applied Geophysics, 178(2), 633–650. https://doi.org/10.1007/s00024-021-02663-9

Wouters, H., (2021). Downscaled bioclimatic indicators for selected regions from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.fe90a594

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Дарія Іванівна Холявчук