The influence of a magnetic field on the energy spectrum of quasiparticles in the A2B6 quantum dot–protein bionanocomplex
Published 2026-11-26
Keywords
- bionanocomplex,
- quantum dot,
- protein,
- magnetic field,
- energy spectrum
Copyright (c) 2025 Олеся Даньків, Владислав Кугівчак, Олександр Війчук, Олег Кузик

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
A mathematical model of the spherical A2B6 quantum dot with an impurity, which is in a magnetic field and interacts with adsorbed protein molecules, and is located in a uniform magnetic field, was constructed. Within the framework of the developed model, the influence of a uniform magnetic field on the energy spectrum of an electron, hole, and exciton in the semiconductor CdTe quantum dot–human serum albumin bionanocomplex has been investigated. The proposed model takes into account the polarization effects caused by the dipole potential of the protein shell, as well as spin splitting in a magnetic field. The regularities of change in the energy of quasiparticles on the radius of the quantum dot (undoped and with a donor or acceptor impurity), the concentration of albumin, and the magnitude of the magnetic field induction were established. It was established that with a decrease in the radius of the quantum dot, the influence of the protein shell becomes more significant. The influence of albumin and spin splitting in a magnetic field are enhanced in the presence of electrically active impurities. The obtained regularities indicate the possibility of controlling the optical and electrical properties of bionanocomplexes using an external magnetic field. The proposed results are important for the development of magnetosensitive biosensors and targeted drug delivery systems. Biohybrid structures quantum dot–protein can be used as fluorescent probes for visualization under the action of a magnetic field.
Downloads
References
- Díaz-González M., De la Escosura-Muñiz A., Fernandez-Argüelles M.T. et al. Quantum dot bioconjugates for diagnostic applications. Topic in Current Chemistry. 2020. Vol. 378. P. 35. DOI: https://doi.org/10.1007/s41061-020-0296-6
- Ehzari H., Safari M., Samimi M., Shamsipur M., Gholivand M.B. A highly sensitive electrochemical biosensor for chlorpyrifos pesticide detection using the adsorbent nanomatrix contain the human serum albumin and the Pd:CdTe quantum dots. Microchemical Journal. 2022. Vol. 179. P. 107424. DOI: https://doi.org/10.1016/j.microc.2022.107424
- Kunachowicz D., Ściskalska M., Jakubek M., Kizek R., Kepinska M. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications. NanoImpact. 2022. V. 26. P. 100405. DOI: https://doi.org/10.1016/j.impact.2022.100405
- Mkrtchyan M. A., Sarkisyan H.A. Influence of external magnetic field on intraband transitions in lens-shaped quantum dot. Journal of Instrumentation. 2024. Vol. 19, № C05014. P. C05014. DOI: https://doi.org/10.1088/1748-0221/19/05/C05014
- Zeng Z., Garoufalis C.S., Baskoutas S. Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum dot. Journal of Physics D: Applied Physics. 2012. Vol. 45, No 23. P. 235102. DOI: https://doi.org/10.1088/0022-3727/45/23/235102
- Pareek A., Kumar D., Pareek A., Gupta M.M. Advancing cancer therapy with quantum dots and other nanostructures: A review of drug delivery innovations, applications, and challenges. Cancers. 2025. Vol. 17, No 5. P. 878. DOI: https://doi.org/10.3390/cancers17050878
- Shaer A., Elsaid M., Elhasan M. The magnetic properties of a quantum dot in a magnetic field. Turkish Journal of Physics. 2016. Vol. 40, No. 3. P. 209–218. DOI: https://doi.org/10.3906/fiz-1510-4
- Raju G.G. Dielectrics in Electric Fields. New York – Basel: Marcel Dekker, Inc., 2003. 728 p.
- Scheider W., Dintzis H.M., Oncley J.L. Changes in the electric dipole vector of human serum albumin due to complexing with fatty acids. Biophysical Journal. 1976. Vol. 16. P. 417–431. DOI: https://dx.doi.org/10.1016/S0006-3495(76)85698-6
- Корбутяк Д.В., Мельничук С.В., Корбут Є.В., Борисик М.М. Телурид кадмію: домішково-дефектні стани та детекторні властивості. Київ: Іван Федоров, 2000. 224 c.
- Abdellatif A.A.H., Younis M.A., Alsharidah M., Al Rugaie O., Tawfeek H.M. Biomedical applications of quantum dots: overview, challenges, and clinical potential. International Journal of Nanomedicine. 2022. Vol. 17. P. 1951–1970. DOI: https://doi.org/10.2147/IJN.S357980
