Euler’s Method with a double step in teaching the numerical solution of differential equations: programming, computation, visualization
Published 2026-11-26
Keywords
- Euler’s method,
- Maple,
- numerical integration,
- Cauchy problem,
- informatics
- programming,
- computation,
- computational thinking,
- visualization,
- teacher,
- computer science ...More
Copyright (c) 2025 Олена Семеніхіна, Артем Юрченко, Юрій Хворостіна, Ігор Горовий, Володимир Шамоня

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
The article presents the results of a study aimed at developing and testing a methodology for fostering computational thinking in students of pedagogical specialties through the integrated use of programming, numerical analysis, and visualization. The central component of the research is the implementation of Euler’s method with a double step in the Maple environment as a means of studying the Cauchy problem for an ordinary differential equation. The methodology involves calculating an approximate solution with two different step sizes, constructing graphs, estimating the error using Richardson’s rule, and comparing the results with a reference value. Leveraging Maple’s built-in programming language and visualization capabilities, students implemented the algorithm, interpreted the results, and created graphical objects illustrating the dynamics of the approximate solution and its accuracy. The findings indicate that this form of learning organization fosters the development of flexible computational skills, the ability to perform program-based modeling, and the capacity for critical error analysis. An analysis of typical student errors identified key difficulties related to array handling, correct indexing, and interpretation of residual terms. The discussion of results is carried out in comparison with contemporary international approaches, particularly with studies emphasizing the importance of visualization, algorithmic thinking, and independent implementation of computational methods in programming education. The methodology shows potential for scaling within educational programs aimed at preparing specialists in STEM fields and demonstrates the effectiveness of integrating computer algebra systems into courses on mathematical informatics.
Downloads
References
- Coşkunserçe O. Comparing the use of block-based and robot programming in introductory programming education: Effects on perceptions of programming self-efficacy. Computer Applications in Engineering Education. 2023. Vol. 31 (5). P. 1234–1255. DOI: https://doi.org/10.1002/cae.22637
- Khvorostina Yu., Shamonia V., Semenikhina O. The connection between the study of mathematics and programming through the prism of scientific and pedagogical research. Вісник науки та освіти. 2025. Т. 4, №34. С. 932–945. DOI: https://doi.org/10.52058/2786-6165-2025-4(34)-932-945
- Maplesoft. Maple – Technical Computing Software for Engineers, Mathematicians, and Scientists. Waterloo Maple Inc. URL: https://www.maplesoft.com/products/maple/
- Ou Q., Liang W., He Z., Liu X., Yang R., Wu X. Investigation and analysis of the current situation of programming education in primary and secondary schools. Heliyon. 2023. Vol. 9 (4). Artical e15530. DOI: https://doi.org/10.1016/j.heliyon.2023.e15530
- Sanusi I. T., Cudjoe E. S., Ayanwale M. A., Adepoju B. Pre-Service Teachers’ Perception of Programming Education. SAGE Open. 2025. Vol. 15 (1). DOI: https://doi.org/10.1177/21582440251327019
- Yang T.-C. The Era of Learning Programming Through Program: Challenges and Potential of ChatGPT in Revolutionizing High School Programming Education. In A. Kashihara, B. Jiang, M. M. Rodrigo, & J. O. Sugay (Eds.). 32nd International Conference on Computers in Education Conference Proceedings. Asia Pacific Soc Computers in Education. ICCE 2024. Vol II. P. 572–577. URL: https://icce2024.org
- Дємєнтьєв Є., Шамоня В., Семеніхіна О. Підготовка IT-фахівців до створення мобільних додатків: огляд актуальних досліджень. Освіта. Інноватика. Практика. 2025. Т. 13, № 1. С. 7–14. DOI: https://doi.org/10.31110/2616-650X-vol13i1-001
- Кобильник Т., Когут У., Жидик В. Методичні аспекти вивчення основ алгоритмізації і програмування мовою Python у шкільному курсі інформатики у старших класах. Фізико-математична освіта. 2021. Т. 31, №5. С. 36–44. DOI: https://doi.org/10.31110/2413-1571-2021-031-5-006
- Пенко В., Пенко О. Використання візуалізації на різних етапах вивчення дисципліни «Програмування». Освіта. Інноватика. Практика. 2023. Т. 11, № 2. С. 31–39. DOI: https://doi.org/10.31110/2616-650X-vol11i2-005
