Regarding the question of the attainability of the theoretical minimum of waste generation as a physical phenomenon in technological processes
Published 2025-05-21
Keywords
- thermodynamic disequilibrium,
- industrial waste,
- physical entity,
- theoretical minimum of waste generation,
- external energy
- entropy,
- thermodynamic duality ...More
Copyright (c) 2025 В'ячеслав Волошин, Вадим Бурко

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
The article presents the results of research related to the concept of the theoretical minimum of waste generation as a physical characteristic of the technological process. With references to the classic works of I. Prigozhin, L. Onsаger, M. Feigenbaum, the limit limits imposed on thermodynamic conditions are shown, which ensure in the technological process not only the production of the main marketable product, but also waste. It is shown that the condition for minimizing waste within the source of their occurrence is technological process, in addition to the state of strong thermodynamic disequilibrium, there is the sufficiency of additional external energy of a given quality, in the calculated volume of at least 62% of the energy used in the technological process. On the basis of computational and experimental examples, it is shown that the entry of the thermodynamic system into the zone of paired bifurcation, according to the initial parameters of the phenomenological equation of L. Onsager, sharply reduces the possibilities of the technological process to achieve the theoretical minimum of waste generation. A reasonable comparison of the technological process in its thermodynamic aspect with the mechanisms of the Feigenbaum chaos associated with the variety of uncertainties that are present in any production of marketable products, through such mechanisms, indirectly, lead to avalanche-like processes of waste generation.
Downloads
References
- Волошин В. С. Відходи та термодинаміка. Київ: ФОП Самченко, 2024. 80 с.
- Волошин В. С. Про деякі закономірності щодо мінімізації відходів у джерелі їх виникнення – технологічному процесі. Екологічні науки. 2024. №55. С. 84-89.
- Prigogine I. Thermodynamics of Irreversible Processes. Wiley-Interscience, 1961. 119 p.
- Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, 1977. 491 p.
- Voloshyn V. S. Alternative method of control over wastes – a contemporary challenge in technology and economics. Development of the Innovative Environmental and Economic system in Ukraine. Monografia. Prague: Oktan Print s.r.o., 2019. P. 108-120.
- Волошин В. С. Відходи та їх природа. Київ: ФОП Самченко, 2024. 630 с.
- Bejan A. Advanced Engineering Thermodynamics. John Wiley & Sons, Inc., 2016. 746 p.
- Moran M. J., Shapiro H. N. Fundamentals of Engineering Thermodynamics. 8th Edition. Chichester, West Sussex, England: John Wiley & Sons, Inc., 2014. 847 p.
- May R. M. Simple mathematical models with very complicated dynamics. Nature. 1976. Vol. 261 (5560). P. 459-467. DOI: http://dx.doi.org/10.1038/261459a0
- Mann H. B., Whitney D. R. On a Test of Whether One of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics. 1947. Vol. 18, № 1. P. 50-60. DOI: http://dx.doi.org/10.1214/aoms/1177730491
- Cheng Hu, Zhendong Yang, Miao He act. From Waste to Wealth: Current Advances in Recycling Technologies for Metal Recovery from Vanadium-Titanium Magnetite Tailings. Journal of Sustainable Metallurgy. 2024. № 3. P. 1007-1035. DOI: http://dx.doi.org/10.1007/s40831-024-00847-w
- Fuerstenau M. C., Jamison G., Yoon R.-H. Froth Flotation: A Century of Innovation. Colorado: Society for Vining, Metallurgy and Exploratiors Inc., 2007. 891 p.
- Dutta S. K. Direct Reduction of Iron Ore: Principles and Practice. CRC Press. 2020. 27 p.
- Gupta C. K., Mukherjee T. K. Hydrometallurgy in Extraction Processes. Boca Raton: CRC Press, 1990. Vol. 1. 248 p.
- Habashi F. Principles of Extractive Metallurgy. London: Routledge, 1986. 494 p. DOI: https://doi.org/10.1201/9780203742112
- Brierley C. L. A perspective on developments in biohydrometallurgy. Hydrometallurgy. 2008. Vol. 94, № 1. P. 2–7. DOI: http://dx.doi.org/10.1016/j.hydromet.2008.05.014
- Dreisinger D. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy. 2006. Vol. 83, № 1–4. P. 10–20. DOI: https://doi.org/10.1016/j.hydromet.2006.03.032
- Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics. 2006. Vol. 19, № 1. P. 25-52. DOI: http://dx.doi.org/10.1007/BF01020332