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Abstract. This work is devoted to the development of qualitative methods for the study
of nonlinear heterogeneous structures, models of which are elliptic equations, which describe
complex nonlinear processes in heterogeneous media. They may also include the structures,
consisting of several parts (phases or layers): multiphase solid and liquid materials; optic
�ber and optic cable layers, anisotropic medium, etc. Relevance of the chosen direction
is due to the fact that many processes in heterogeneous environments under conditions
of high temperatures, heavy loads and signi�cant deformations are described using nonli-
near di�erential equations with discontinuous (singular) data (coe�cients, right-hand side,
boundary and initial conditions, etc.). At the same time, the concept of weak solutions that
meet the modern needs of mathematical physics arose. Nonlinear di�erential equations have
a complex structure, which actually makes them impossible to study by �nding solutions in
an explicit form. Therefore, the development of qualitative methods for their investigations
becomes an extremely important tool. This paper considers mathematical models of multi-
layer optic �ber and cable, which consist of 3 and 5 di�erent materials respectively with
di�erent properties. Using potential theory, the behavior of a weak solution of this equation
at a �xed point is estimated and analyzed by the value of the nonlinear Wol� potential
from the right hand side. We study pointwise properties that play a key role in the further
study: expansion of positivity Harnack's inequalities, regularities and others. The paper di-
scusses also the application of the obtained theoretical results for the problem of modeling
and analyzing of optic �ber and optic cable modern technologies.

Keywords: multiphase (double phase) equations, optic �ber models, (p(x), q(x))− Laplace,
Wol� potential, weak solution, pointwise estimates.
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1. Introduction

We focus here on the development of qualitative methods of nonlinear analysis for the
study of double-phase elliptic equations with variable exponents and their applications in
modern optic technologies. The active development of the problem under consideration is
evidenced by numerous high citing publications during the past 2-3 years in leading journals:
V. B�ogelein, F. Duzaar, P. Marcellini, C. Scheven [2], V. B�ogelein, M.Strunk [4], C. De
Filippis, G. Mingione [5] and others. The double-phase elliptic equations of the divergence
form were studied in �rst in the papers [9, 10] as models of strictly anisotropic materials and
for the description of Lavrent'ev phenomenon. H�older continuity and Harnack's inequality
for bounded solutions to the homogeneous equation were obtained in [1], [6] under the same
conditions, which we have herein .

These works were fundamental for further studies of the existence and regularity of
solutions of various types of problems for such equations. The novelty of the results of this
paper is the development of new functional methods of nonlinear analysis for the study of new
actual problems, the mathematical models of which are double-phase elliptic equations with
variable exponents. We introduce here the new potential estimates for the weak nonnegative
solutions via nonlinear Wol� potential of the right hand side f ∈ L1 of the equation and
discuss their applications in the modeling of optic �ber devices.

The considering class of double-phase equations serves as mathematical model of media
including structures which consist of several parts (phases or layers): multiphase solid and
liquid materials; porous, anisotropic media; optic �ber layers, optic cable layers, light diodes,
semiconductors devices, etc. The relevance of the chosen direction is due to the fact that many
processes in heterogeneous environments under conditions of high temperature, heavy loads
and signi�cant deformations are described by using similar equations and with discontinuous
(singular) data (coe�cients, right-hand side, boundary and initial conditions, etc.). In our
case this is a right hand side f ∈ L1. At the same time, the concept of weak solutions is widely
used, which meets the modern needs of mathematical physics. Nonlinear di�erential equations
have a complex structure, which actually makes it impossible to study them by �nding
solutions in an explicit form. Therefore, the development of qualitative methods of analysis
becomes an extremely important tool. In the present manuscript we obtain new pointwise
estimates for the weak nonnegative solution via nonlinear Wol� potential from the right
hand side of elliptic equations with non-standard growth conditions, (p, q)− double-phase
equations, with variable exponents: p(x), q(x). Obtained in the manuscript new pointwise
properties for the weak solutions via nonlinear Wol� potential from the right-hand side f ∈ L1

will explore fundamental qualitative properties that play a key role in further studying the
behavior of solutions: boundedness, expansion of positivity, H�older continuity, and Harnack's
inequalities.

The main results of the current paper are expansions of the works [4] and [8] for the
case of double-phase elliptic equations with variable exponents p(x), q(x).

We consider also mathematical models of multilayer optic �ber and multilayer optic
cable, which consist of 3 and 5 di�erent materials with di�erent properties and discuss the
application of the obtained theoretical results for the problem of modeling and analyzing of
optic �ber and optic cable modern technologies.

254



Kudrych Yu., Buryachenko K., Mathematical analysis of multi layers optic �ber models

2. Statement of the problem

In a bounded domain Ω ⊂ Rn, n ≥ 2 we consider a double-phase elliptic equation with
variable exponents:

−div
[
(|∇u|p(x)−2 + a(x)|∇u|q(x)−2)∇u

]
= f(x) ≥ 0, (1)

−divA(x, ∇u) = f(x) ≥ 0, (2)

where f(x) ∈ L1(Ω). We assume that the function A(x, ξ) = |ξ|p(x)−1 + a(x)|ξ|q(x)−1 : Ω ×
Rn → Rn satis�es the conditions

1) A(x, ξ) satis�es the Carath�eodory condition,
2) A(x, ξ)ξ ≥ µ1(|ξ|p(x) + a(x)|ξ|q(x)),
3) |A(x, ξ)| ≤ µ2(|ξ|p(x)−1 + a(x)|ξ|q(x)−1),
with some constants µ1, µ2 > 0.
We also assume that

0 ≤ a(x) ∈ C0, α(Ω), α ∈ (0, 1].

LetM be a set of all measurable functions, p(x), q(x) : Ω → (1,∞). For p(x), q(x) ∈ M,
we set:

p− := essinfx∈Ωp(x), q− = essinfx∈Ωq(x), p+ := esssupx∈Ωp(x), q+ = esssupx∈Ωq(x).

We assume the following for the powers of nonlinearity:

1 < p− ≤ p+ ≤ q− ≤ q+ ≤ min

(
p− + α,

n(p− − 1)

n− p−

)
, q+ < n. (3)

Let us introduce the necessary de�nitions.

De�nition 1. Let G(x, t) = t(tp(x)−1 + a(x)tq(x)−1). Then W 1,G(Ω) denotes the class of
functions u that are weakly di�erentiable in Ω and satisfy the condition∫

Ω

G(a(x), |∇u|) dx < ∞.

De�nition 2. We say that u is a weak solution to Eq. (2), if u ∈ W 1,G(Ω) and it satis�es
the integral identity ∫

Ω

A(x, ∇u)∇φdx =

∫
Ω

f φ dx, (4)

for all φ ∈
0

W
1,G

(Ω).

In the case of Eq.(1) condition (4) takes the form:∫
Ω

(
|∇u|p(x)−1 + a(x)|∇u|q(x)−1

)
∇φdx =

∫
Ω

f φ dx. (5)
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We will prove the pointwise estimates for a nonnegative weak solution to the double-
phase equation (1) in terms of the nonlinear Wol� potentials:

W f
1,p(x)(x0, R) =

∞∑
j=0

ρ
p(x)−n
j

∫
Bρj (x0)

f dx


1

p(x)−1

, ρj =
R

2j
, j = 0, 1, ...

W f
1,q(x)(x0, R) =

∞∑
j=0

ρ
q(x)−n
j

∫
Bρj (x0)

f dx


1

q(x)−1

, ρj =
R

2j
, j = 0, 1, ...,

under assumption that the series in the above formulae are convergent, i.e. the Wol� potentials
are �nite.

Let us note that double-phase elliptic equations of the divergence form were studied in
�rst in the papers [9, 10] as models of strictly anisotropic materials and for the description of
Lavrent'ev phenomenon. H�older continuity and Harnack inequality for bounded solutions to
the homogeneous equation (1) (with function f ≡ 0) were obtained in [1], [6] under conditions
(3).

3. Main result

The main result of the present work is the following theorem.

Theorem 3. Let u ∈ W 1,G(Ω)∩L∞ be a nonnegative weak solution to Eq. (1). Let conditions

(3) be satis�ed and let [a]C0,α(Ω) := sup
x,y∈Ω, x ̸=y

|a(x)−a(y)|
|x−y|α . Assume also that the point x0 ∈ Ω is

such that B4ρ(x0) ⊂ Ω. Then there exist constants c1, c2 > 0 depending only on p−, q+, n,

[a]C0,α(Ω) and ||u||q+−p−
L∞(Ω) such that, under condition a(x0) = 0 the following estimate holds:

c1W
f
1,p−(x0, ρ) ≤ u(x0) ≤ c2 inf

Bρ(x0)
u+ c2W

f
1,p−(x0, 2ρ). (6)

If a(x0) > 0 and ρα0 = a(x0)
4[a]C0,α(Ω)

≥ ρα, then there exist constants c3, c4 > 0 depending

on p−, q+, n, [a]C0,α(Ω), ||u||q+−p−
L∞(Ω) and a(x0) such that the following estimate

c3W
f
1,q+

(x0, ρ) ≤ ρ+ u(x0) ≤ 3ρ+ c4 inf
Bρ(x0)

u+ c4W
f
1,q+

(x0, 2ρ) (7)

holds.
Under conditions a(x0) > 0 and ρ0 < ρ will be true the estimate

c3W
f
1,q+

(x0, ρ) + c3(W
f
1,p−(x0, ρ)−W f

1,p−(x0, ρ0)) ≤ ρ+ u(x0) ≤

≤ 3ρ+ c4 inf
Bρ(x0)

u+ c4W
f
1,q+

(x0, 2ρ) + c4(W
f
1,p−(x0, 2ρ)−W f

1,p−(x0, 2ρ0)). (8)

Proof. The result of this theorem will follow from the analogue result, proved in [4] for
the double-phase equation with constant powers of nonlinearity p, q :

−div
[
(|∇u|p−2 + a(x)|∇u|q−2)∇u

]
= f(x) ≥ 0, (9)

with
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1 < p ≤ q ≤ min

(
p+ α,

n(p− 1)

n− p

)
, q < n. (10)

Taking into account our conditions (3), we have the statement of our theorem as a
consequence of the analogous result for Eq.(9), see [4].

Remark 4. In the case a(x0) = 0 inequality (6) yields the known result of Kilpel�ainen and
Mal�y [7], where there were obtained the pointwise estimates of solutions to a quasilinear
elliptic equation with the p-Laplace and measure µ on the right-hand side with the help of
the nonlinear Wol� potential W µ

β, p−
(x0, R):

W µ
β, p−

(x0, R) :=
∞∑
j=0

(
µ(Bρj(x0))

ρ
n−βp−
j

) 1
p−−1

, ρj =
R

2j
, j = 0, 1, 2, ... (11)

4. Applications to the multi layers optic �ber models.

Consider the multilayer optic �ber model, described by the exponents:

p(x) =


p1 x ∈ Ω1,
p2 x ∈ Ω2,
p3 x ∈ Ω3,
· · ·
pn x ∈ Ωn;

q(x) =


q1 x ∈ Ω1,
q2 x ∈ Ω2,
q3 x ∈ Ω3,
· · ·
qn x ∈ Ωn,

(12)

with the constant pi, qi, i = 1, ..., n, depending on the number of layers in the optic �ber. In
this case of discrete-valued p(x) and q(x), we stand

p− = min
i=1,..,n

pi, q− = min
i=1,..,n

qi, p+ = max
i=1,..,n

pi, q+ = max
i=1,...,n

qi.

As usual, optic cable is a carefully designed multilayer designed to protect sensitive optic �ber
and ensure its optimal performance under various environmental conditions and mechanical
loads. The main components working in interaction include:

• Core: Ω1, The innermost part of the cable, serving as a way to transmit light. It is
usually made of high-purity glass or, less commonly for single-mode �bers, of plastics;

• Cladding: Ω2, The optical layer immediately surrounding the core. Its material
composition is chosen to have a lower refractive index than the core, which is a
critical property that contributes to the complete internal re�ection and retention of
light in the core;

• Bu�er layer: Ω3, A protective coating applied directly over the shell. This layer
provides substantial physical protection to the �ber, protecting it from minor abrasive
damage, impact and exposure to environmental elements;

• Power elements: Ω4, These components are strategically integrated into the cable
structure to provide tensile strength and mechanical reinforcement, protecting the
optic �ber from stretching, bending, and crushing;

• Coating: Ω5, The outer protective layer of the cable. This layer provides comprehensi-
ve protection against moisture, ultraviolet radiation, chemicals and mechanical damage,
and often serves to identify the cable.
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For example, in the case of a optic �ber it is a carefully designed by three multilayer desi-
gned to protect sensitive optic �ber and ensure its optimal performance under various envi-
ronmental conditions. The main components working in interaction include only two parts
(core and cladding). Please, see the following single-mode optic �ber:

Core Cladding CoaƟng

250μm
125μm

8-10μm

Taking into account that optic �ber consists of di�erent kinds of materials, it is natural,
that the value of powers of nonlinearity, p(x), q(x) take a di�erent values (12) on each of layers
Ωi, i = 1, ..., 5.

Thus, the core usually consists of ultrapure quartz (SiO2). To achieve the required hi-
gher refractive index relative to the shell, quartz is precisely doped with elements such as
germanium dioxide (GeO2) [11]. The ultra-purity of quartz glass is paramount to minimize
light absorption and scattering, thereby ensuring high transmission e�ciency. The cladding
layer is usually made of pure quartz or �uorine-doped quartz, which e�ectively reduces its
refractive index compared to the germanium-doped core [11]. Acrylate polymers or polyimi-
des are used for bu�er. These materials are chosen because of their adhesion to glass and
protective properties. Aramid threads (e.g. Kevlar, Twaron) are wide use materials for power
elements.The cable outer sheath is the most visible protective layer of the optical cable.
Its main role is to protect the internal components from environmental factors, mechanical
damage and �re dangers. The choice of sheath material is very application-dependent, balanci-
ng performance, cost and safety requirements, for instance: polyvinyl chloride, polyethylene,
polyurethane and others [12].

For (12) the result of Theorem 3 can be applied. So, we can estimate the pointwise
value of the solution u(x0) via nonlinear Wol� potential of the right-hand side f ∈ L1(Ω),
depending on the point x0 ∈ Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5.

Conclusions. The paper discusses a mathematical model of multilayer optic �ber and
optic cable, which consists of 3 and 5 di�erent materials respectively with di�erent properties.
Using potential theory, the behavior of a weak solution of this equation at a �xed point
from the value of the nonlinear Wol� potential from the right side is analyzed. This result
complements the work of one of the author [4] in the case of variable powers p(x), q(x) of
nonlinearity. Additionally, the paper discusses the application of the obtained results for the
problem of modeling and analyzing of optic �ber modern technologies.
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äåêiëüêîõ ÷àñòèí (ôàç àáî ïðîøàðêiâ): áàãàòîôàçíèõ òâåðäèõ i ðiäêèõ ìàòåðiàëiâ; îïòè-
÷íèõ âîëîêîí i îïòè÷íèõ êàáåëiâ, àíiçîòðîïíèõ ñåðåäîâèù, òîùî. Àêòóàëüíiñòü îáðàíî-
ãî íàïðÿìêó îáóìîâëåíà òèì, ùî áàãàòî ïðîöåñiâ â íåîäíîðiäíèõ ñåðåäîâèùàõ â óìî-
âàõ âèñîêèõ òåìïåðàòóð, âåëèêèõ íàâàíòàæåíü i çíà÷íèõ äåôîðìàöié îïèñóþòüñÿ çà
äîïîìîãîþ íåëiíiéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü ç ðîçðèâíèìè (ñèíãóëÿðíèìè) äàíèìè
(êîåôiöi¹íòè, ïðàâà ñòîðîíà, ãðàíè÷íi òà ïî÷àòêîâi óìîâè òîùî). Ïðè öüîìó âèíèêà¹
êîíöåïöiÿ ñëàáêèõ ðîçâ'ÿçêiâ, ÿêi âiäïîâiäàþòü ñó÷àñíèì ïîòðåáàì ìàòåìàòè÷íî¨ ôiçè-
êè. Íåëiíiéíi äèôåðåíöiàëüíi ðiâíÿííÿ ìàþòü ñêëàäíó ñòðóêòóðó, ùî ôàêòè÷íî ðîáèòü
íåìîæëèâèì ¨õ âèâ÷åííÿ òà àíàëiç øëÿõîì ïîøóêó ðîçâ'ÿçêó ó ÿâíîìó âèãëÿäi. Òîìó,
ðîçðîáêà ñàìå ÿêiñíèõ ìåòîäiâ äîñëiäæåííÿ ñòà¹ íàäçâè÷àéíî âàæëèâèì iíñòðóìåíòîì
äëÿ ¨õ ïîäàëüøîãî âèâ÷åííÿ. Â ðîáîòi ðîçãëÿíóòî ìàòåìàòè÷íi ìîäåëi áàãàòîøàðîâîãî
îïòè÷íîãî âîëîêíà òà îïòè÷íîãî êàáåëþ, ÿêi ñêëàäàþòüñÿ ç 3 òà 5 ðiçíèõ ìàòåðiàëiâ âiä-
ïîâiäíî ç ðiçíèìè âëàñòèâîñòÿìè. Âèêîðèñòîâóþ÷è òåîðiþ íåëiíiéíèõ ïîòåíöiàëiâ, îöi-
íþ¹òüñÿ òà àíàëiçó¹òüñÿ ïîâåäiíêà ñëàáêîãî ðîçâ'ÿçêó öüîãî ðiâíÿííÿ â ôiêñîâàíié òî÷öi
÷åðåç çíà÷åííÿ íåëiíiéíîãî ïîòåíöiàëó Âîëüôà âiä ïðàâî¨ ÷àñòèíè ðiâíÿííÿ. Âèâ÷àþòüñÿ
ïîòî÷êîâi âëàñòèâîñòi, ÿêi âiäiãðàþòü êëþ÷îâó ðîëü ó ïîäàëüøîìó äîñëiäæåííi òà âè-
â÷åííi òàêèõ âëàñòèâîéñòåé ðîçâ'ÿçêiâ, ÿê, íàïðèêëàä, ðîçøèðåííÿ çà ïîçèòèâíiñòþ, íå-
ðiâíiñòü Ãàðíàêà, òà ií. Â ñòàòòi ðîçãëÿíóòî òàêîæ çàñòîñóâàííÿ îòðèìàíèõ òåîðåòè÷íèõ
ðåçóëüòàòiâ äëÿ âèðiøåííÿ ïðîáëåìè ìîäåëþâàííÿ òà àíàëiçó ñó÷àñíèõ îïòîâîëîêîííèõ
òåõíîëîãié.

Êëþ÷îâi ñëîâà: áàãàòîôàçíi ðiâíÿííÿ, îïòîâîëîêîííi ìîäåëi, (p(x), q(x)) ðiâíÿííÿ
Ëàïëàñà, ïîòåíöiàë Âîëüôà, ñëàáêèé ðîçâ'ÿçîê, ïîòî÷êîâi îöiíêè.
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