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Abstract. The Lagrangian and Hamiltonian approaches are key structural elements in
classical mechanics courses for undergraduate students and a powerful part of the physics
education culture.

The paper is created as a project for students aimed at applying the Lagrangian and
Hamiltonian formalism for the description of an illustrative three degrees of freedom system,
learning the peculiarities of these formalisms, identifying the conservation laws and �nding
the integrals/constants of motion. Students can develop using these di�erent independent
techniques and obtaining the coinciding results. In other words, this paper is an attempt
to present clear interrelations of these approaches training new skills, useful for students
learning classical mechanics.

Keywords: Lagrangian and Hamiltonian formalisms, Conservation laws, cyclic/ignorable
coordinates, Poisson bracket, Three Degrees of Freedom system.

1. Introduction

The Lagrangian and Hamiltonian approaches are completely equivalent and it is easy
to prove that each of them is indeed consistent with another. However, each formalism is
beautiful and convenient and is applied behind the frame of classical mechanics [1], [2], [3],
[4], [5], [6]. Each technique has its own �playground� or physical space: con�guration space
(Lagrange mechanics) and phase space (Hamilton mechanics) and its �key players�: velocities
and positions, and momenta and positions, respectively.

One needs to predict the time evolution of three degrees of freedom system based on
application of the conservation laws; solving the Euler-Lagrange equations and Hamilton's
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equations, write the equations of motion, �nd the integrals of motion for this system, visualize
the motion laws and the phase trajectory of the motion.

2. Lagrangian

Consider the illustrative Lagrangian of the three degrees of freedom system [7], [8]:

L =
ẋ2 + ẏż

x
(1)

with the initial conditions (ICs):

x(0) = 1, ẋ(0) = 1, y(0) = 0, ẏ(0) = 1, z(0) = 0, ż(0) = 1. (2)

A very important feature of the Lagrangian is that conserved quantities can easily be
read o� from it.

The generalized momentum �canonically conjugate� to the coordinate xi is de�ned by

pi =
∂L

∂ẋi

.

If the Lagrangian does not depend on some coordinate xi, then

ṗi =
d

dt

∂L

∂ẋi

=
∂L

∂xi

= 0,

i.e. the generalized momentum conjugate to a cyclic coordinate is a constant or a conserved
quantity.

This coordinate is known as �cyclic� or �ignorable�. The Lagrangian (1) has some cyclic
coordinates t, y, z, and it is easy to note them as coordinates that do not appear in the
Lagrangian in explicit form.

The Euler-Lagrange equations

d

dt

∂L

∂ẋi

− ∂L

∂xi

= 0 (3)

for Lagrangian (1) can be written as:

2ẍ

x
− ẋ2

x2
+

ẏż

x2
= 0,

ẏ

x
= const = C2,

ż

x
= const = C1,

(4)

with the ICs (2). The integration constants C1 and C2 are easily determined from (4):

C1 =
ż(0)

x(0)
=

1

1
= 1, C2 =

ẏ(0)

x(0)
=

1

1
= 1. (5)

Now we can separately rewrite the �rst Euler-Lagrange equation (4) taking into account the
ICs (2):

2ẍ

x
− ẋ2

x2
+

ẏż

xx
= 0,

2ẍ

x
− ẋ2

x2
+ C2C1 = 0,

2ẍ

x
− ẋ2

x2
= −1. (6)
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Now we can solve this Euler-Lagrange equation by rewriting it as:

2ẍ

x
− 2ẋ2

x2
= − ẋ2

x2
− 1. (7)

Equation (7) can be written as:

d

dt

(
2ẋ

x

)
= −1

4

(
2ẋ

x

)2

− 1. (8)

However, the generalized momentum px for the Lagrangian (1) is equal to

px =
∂L

∂ẋ
=

2ẋ

x
, (9)

so we can deal with the di�erential equation (8) written as

dpx
dt

+
1

4
p2x = −1. (10)

The separation of variables was used to solve the di�erential equation (10), yielding the
solution:

px =
2 cos t

1 + sin t
. (11)

Now we use the expression (11) and the de�nition of the generalized momentum (9) to �nd
the laws of motion.

2ẋ

x
=

2 cos t

1 + sin t
. (12)

Integration of the di�erential equation (12) with ICs (2) leads to the following laws of motion.
x(t) = 1 + sin t,

y(t) = t− cos t+ 1.

z(t) = t− cos t+ 1

(13)

The visualization of the results (13) is presented in Fig. 1. Point denotes the initial
position of x(0); red point denotes the initial position of y(0) and z(0).

Pictures illustrating trajectories y(x), z(x), and z(y) are presented in Fig. 2à, Fig. 2á,
Fig. 2â. Point denotes the initial position x(0), y(0), x(0), z(0) and y(0), z(0).

Pictures illustrating trajectories px(x), py(y) and pz(z) are presented in Fig. 3à, Fig. 3á,
and Fig. 3â. Point denotes the initial position x(0), px(0), y(0), py(0) and z(0), pz(0).

3. Conservation Laws and Symmetries

Noether's Theorem states: �For each symmetry of the Lagrangian, there is a conserved
quantity� [9]. Ignorable/cyclic variables for the Lagrangian (1) are t, y, and z.

Thus, the momenta of py and pz are conserved when the Lagrangian is independent of
y and z. In other words, conservation of momenta py and pz arises from spatial translation
invariance in the y and z directions. Thus:

py =
∂L

∂ẏ
=

ż

x
= const, pz =

∂L

∂ż
=

ẏ

x
= const (14)
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Ðèñ. 1. The x(t), y(t), z(t) dependencies.

(à) y(x) dependence (á) z(x) dependence (â) z(y) dependence

Ðèñ. 2. Trajectories y(x), z(x), and z(y).

are conserved quantities.
Conservation of energy arises when the Lagrangian is independent of time, that means

∂L

∂t
= 0.

We can write the law of conservation of energy by the de�nition:

E =
3∑

i=1

ẋi
∂L

∂ẋi

− L =
ẋ2 + ẏż

x
= const. (15)
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(à) px(x) (á) py(y) (â) pz(z)

Ðèñ. 3. Phase trajectories px(x), py(y), and pz(z).

Thus, we have three conservation laws (three integrals of motion): E, py, pz. Their
values can be found at chosen ICs (2):

py = 1, pz = 1, E =
ẋ2 + ẏż

x
=

(ẋ(0))2 + ẏ(0)ż(0)

x(0)
= 2. (16)

Then, based on the energy conservation law, one can �nd the laws of motion instead of
solving the Euler-Lagrange equations (4). The procedure consists in solving the �rst-order
di�erential equation with separated variables.

We use the law of conservation of energy (15), (16) and the second equation of (4) to
�nd ẋ(t):

ẋ = ±
√
2x− x2. (17)

Taking into account the direction of motion, that is, knowing the value of the component
x of the initial velocity (ẋ(0) = 1), one can write the �rst-order di�erential equation with
separated variables.

dt =
dx√

2x− x2
. (18)

The integration of the last equation (18) leads to t(x) dependency:

t =

∫ x

x0

dx√
2x− x2

=

∫ x

1

dx√
1− (x− 1)2

= arcsin(x− 1), (19)

which can be rewritten as:

x(t) = 1 + sin t. (20)

Then knowing x(t), one can solve the �rst-order di�erential equations (4) and �nd z(t) and
y(t):

ż

x
= 1 ⇒ z(t) = t− cos t+ 1,

ẏ

x
= 1 ⇒ y(t) = t− cos t+ 1. (21)

Thus, applying the energy conservation law led us to the same results (see previous section).
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4. Hamiltonian Formalism

The �playground� in this case is de�ned as the six-dimensional phase space of posi-
tion and momentum components. Starting with the Lagrangian (1) one can calculate the
momentum components:

px =
∂L

∂ẋ
=

2ẋ

x
, py =

∂L

∂ẏ
=

ż

x
, pz =

∂L

∂ż
=

ẏ

x
, (22)

then invert these expressions to �nd the functions ẋ(x, y, z, px, py, pz), ẏ(x, y, z, px, py, pz),
ż(x, y, z, px, py, pz) and now calculate the Hamiltonian H(x, y, z, px, py, pz) for this illustrative
dynamical system by using the Legendre transformation:

H(x, y, z, px, py, pz) = ẋpx + ẏpy + żpz − L =
1

4
p2xx+ xpypz. (23)

Then we rewrite the energy in the same variables:

E =
ẋ2 + ẏż

x
=

1

4
p2xx+ xpypz = H. (24)

The energy coincides with the Hamiltonian. So, this three degrees of freedom system is
conservative. Now we can prove that energy is an integral of motion, using the Poisson
bracket.

5. The Poisson Bracket as a Symmetry Identi�er

In Hamiltonian mechanics, the Poisson bracket is an important binary operation, playi-
ng a central role in Hamilton's equations of motion, which govern the time evolution of a
Hamiltonian dynamical system. The Poisson bracket is a very elegant and powerful tool in
Hamiltonian mechanics that acts as a tool for Symmetry Analysis. Using the de�nition of
Poisson bracket and anti-symmetry, linearity, the Leibniz rule, and the Jacobi identity, it
is easy to �nd the integrals of motion in the phase space. These constants of motion will
commute with the Hamiltonian under the Poisson bracket. Suppose some function f(p, q) is
a constant of motion. This implies that if p(t), q(t) is a trajectory or solution to Hamilton's
equations of motion, then along that trajectory:

df

dt
= 0. (25)

In particular, it is easy to prove that:

{E,H} = 0, {py, H} = 0, {pz, H} = 0. (26)

Thus, E, py and pz are integrals of motion.
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6. Hamilton Canonical Equations of Motion

Hamilton canonical equations of motion describe the time evolution of the canonical
variables (q(t), p(t)) in the phase space. By de�nition, these equations can be written as:

ṗx = −∂H
∂x

ẋ = ∂H
∂px

ṗy = −∂H
∂y

ẏ = ∂H
∂py

ṗz = −∂H
∂z

ż = ∂H
∂pz

.

(27)

Using equations (27) we �nd equations for the Hamiltonian (23):

ṗx = −∂H
∂x

= −1
4
p2x − pypz = −1

4
p2x − 1,

ẋ = ∂H
∂px

= 1
2
pxx,

ṗy = −∂H
∂y

= 0 ⇒ py = const = 1,

ẏ = ∂H
∂py

= xpz = x,

ṗz = −∂H
∂z

= 0 ⇒ pz = const = 1,

ż = ∂H
∂pz

= xpy = x.

(28)

Solutions of the system of equations (28) can be written in the form of (11), (16) and
(13). So, the obtained results indicate that the generalized momenta py, pz, and the energy
E are integrals of motion, and obviously, their values coincide with previous results.

Conclusions. The main idea of this paper is solving the problem in the frame of
di�erent approaches. We started from Lagrangian, wrote Euler-Lagrange equations, identi-
�ed integrals of motion, used the Legendre transformation, wrote Hamiltonian and Hami-
lton equations. We can easily transform the project direction and start from Hamiltonian.
Sophomores of Faculty of Natural Sciences of National University �Kyiv-Mohyla Academy�
participated in this project. My observation is that ful�llment of the project is more e�ective
than solution of typical problems. Lessons of this project teach that each approach is useful,
beautiful and e�ective at solving complex problems of classical mechanics. Moreover, this
way students develop their mathematical skills and learn to apply di�erent software tools in
solving mathematical problems, in visualization of obtaining results and interpreting them.
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Cèñòåìà ç òðüîìà ñòóïåíÿìè âiëüíîñòi â ðàìêàõ Ëàãðàíæåâîãî
òà Ãàìiëüòîíîâîãî ïiäõîäiâ

Îêñàíà Øåâöîâà

Àíîòàöiÿ. Ôîðìàëiçìè Ëàãðàíæà òà Ãàìiëüòîíà ¹ ñòðóêòóðíèìè åëåìåíòàìè êóð-
ñiâ êëàñè÷íî¨ ìåõàíiêè äëÿ áàêàëàâðiâ i ÷àñòèíîþ ôiçè÷íî¨ îñâiòíüî¨ êóëüòóðè.

Ñòàòòÿ ñòâîðåíà ó ôîðìàòi ïðîåêòó äëÿ ñòóäåíòiâ. �¨ ìåòîþ ¹ çàñòîñóâàííÿ Ëà-
ãðàíæåâîãî òà Ãàìiëüòîíîâîãî ôîðìàëiçìiâ äëÿ îïèñó iëþñòðàòèâíî¨ ñèñòåìè ç òðüîìà
ñòóïåíÿìè âiëüíîñòi, âèâ÷åííÿ îñîáëèâîñòåé öèõ ôîðìàëiçìiâ, âìiííÿ ïîáà÷èòè çàêîíè
çáåðåæåííÿ i çíàéòè iíòåãðàëè ðóõó. Ñòóäåíòàì áóäå öiêàâî îòðèìàòè ñïiâïàäàþ÷i ðå-
çóëüòàòè â ðàìêàõ ðiçíèõ ïiäõîäiâ. Äàíà ñòàòòÿ ¹ ñïðîáîþ ïðåäñòàâèòè âçà¹ìîçâ'ÿçîê
öèõ ôîðìàëiçìiâ äëÿ ðîçâèòêó ó ñòóäåíòiâ íîâèõ êîðèñíèõ íàâè÷îê ó âèâ÷åííi êóðñó
êëàñè÷íî¨ ìåõàíiêè.

Êëþ÷îâi ñëîâà: Ôîðìàëiçìè Ëàãðàíæà òà Ãàìiëüòîíà, çàêîíè çáåðåæåííÿ, öèêëi÷íi
êîîðäèíàòè, äóæêà Ïóàññîíà, ñèñòåìà ç òðüîìà ñòóïåíÿìè âiëüíîñòi.
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